
11

The Hardware Implementation of NIST Lightweight

Cryptographic Candidate SpoC for IoT Devices

Dennis Agyemanh Nana Gookyi1 and Kwangki Ryoo2

1Student, Department of Information and Communication Engineering, Hanbat National University, Daejeon,

34155, South Korea
2Professor, Department of Information and Communication Engineering, Hanbat National University, Daejeon,

34155, South Korea

Abstract1

Background/Objectives: This paper presents the hardware implementation of SpoC Lightweight
Cryptography (LWC) candidate for low-cost devices. Methods/Statistical analysis: The proposed hardware
implementation of the SpoC Authenticated Encryption with Associated Data (AEAD) is capable of both
encryption and decryption. The design was implemented on the Virtex-4 Field FPGA using Xilinx ISE Design
Suite. The synthesis results reported 951 slices at 246.61 MHz maximum clock frequency. The encryption
and decryption routines take 589 and 590 cycles. Findings: This work used 30% fewer LUTs for both
encryption and decryption as compared to the existing work. The decrease in area in this work is a result of
the optimization of the implementation for low-cost devices while the existing work implemented the basic
iterative architecture without optimizing. This work achieved almost two times the frequency of the existing
SpoC implementation. The existing SpoC implementation used 150 fewer cycles as compared to this work.
This is because this work implemented the SpoC using extra registers in other to reduce the critical path
which increases the frequency. Improvements/Applications: For future works, the proposed SpoC AEAD will
be combined with other security protocols to form a lightweight cryptographic System-on-Chip (SoC).

Index Terms

NIST, Lightweight Cryptography, AEAD, SpoC, FPGA

Corresponding author : Kwangki Ryoo
kkryoo@gmail.com

• Manuscript received January 28, 2021.

• Revised February 26, 2021 ; Accepted March 20, 2021.

• Date of publication March 31, 2021.

© The Academic Society of Convergence Science Inc.

2619-8150 © 2019 IJASC. Personal use is permitted, but republication/redistribution requires IJASC permission.

International Journal of

Advanced Science and Convergence

ISSN : 2619-8150

Volume 3, Number 1, March 2021

https://doi.org/10.22662/IJASC.2021.3.1.011

mailto:kkryoo@gmail.com

International Journal of Advanced Science and Convergence 2021 Mar ; 3(1):11-20

12

I. INTRODUCTION

The Internet of Things (IoT) is said to be the

fourth industrial revolution [1]. This is a

technological revolution that has significantly

changed the way we interact with others, live, and

work. The backbone of IoT is composed of

extremely low cost and resource-constrained devices

that gather, process, store and transmit sensitive

information. The devices are constrained in terms of

computational complexity, power, and storage to

reduce the cost of mass deployment. Since

communication among IoT devices is mainly

through insecure channels, security issues such as

confidentiality, integrity, and authenticity [2] can be

applied to the devices. Confidentiality deals with an

adversary’s ability to access private communication,

integrity deals with the ability to detect a change in

transmitted information while authenticity deals with

the ability to identify the sender of a message. To

reduce the cost of securing computing devices, a

single algorithm can be used to ensure confidentiality,

integrity, and authenticity. This algorithm is known

as Authenticated Encryption with Associated Data

(AEAD).

For the past decade, there has been a high need for

AEAD schemes, and for that matter, NIST issued the

Competition for Authenticated Encryption: Security,

Applicability, and Robustness (CAESER) contest in

January 2013 [3]. The CAESAR contest was to

standardize Authenticated Encryption (AE) for

conventional computing devices. The contest ended

in March 2019 [4] of which six submissions were

declared winners. During the CAESAR contest,

NIST realized that most of the submissions were not

tailored towards low-cost devices like sensors, smart

cards, and RFID tags. This lead NIST to issue a call

for lightweight AEAD schemes in August 2018 as

part of the LWC standardization process [5]. The

lightweight AEAD contest has now entered the

second round with thirty-two candidates [6]

announced in August 2019. The contest is due to end

in the year 2021. The submissions for the lightweight

AEAD contest are evaluated in resource-constrained

environments using hardware metrics such as area,

power consumption, memory, throughput, and

latency. The NIST evaluation team of the contest has

called for third-party hardware implementation of the

second-round candidates using Application-Specific

Integrated Circuit (ASIC) and FPGA tools.

The first step in the evaluation of a cryptographic

algorithm for low-cost devices is to measure the

hardware resources consumed by the algorithm. This

paper, therefore, proposes and implements a

hardware architecture for SpoC lightweight AEAD

algorithm [7]. SpoC is one of the submissions that

made it into the second round of the NIST

lightweight AEAD competition. The rationale for

selecting SpoC out of the thirty-two candidates can

be summarized as below:

• Security: SpoC employs 128-bit security which

is sufficient for low-cost devices. Moreover, several

third-party cryptanalyses of the algorithm found no

weakness or errors in the specification. SpoC also

meets the minimum-security guarantees for

confidentiality and integrity that NIST set for the

lightweight AEAD competition.

• Underlying construction: SpoC mode of

operation is permutation-based which has become

popular over the last decade. The efficiency of the

permutation-based mode of operation coupled with

Keccak [8] (a permutation-based candidate) winning

the Secure Hash Algorithm 3 (SHA-3) [9]

competition has made algorithms with such

constructions preferable.

• Estimated hardware footprint: Most of the

algorithms that made it into the second round of the

NIST lightweight AEAD competition make use of

Substitution-Boxes (S-Boxes) which take up a lot of

hardware resources and memory to implement. The

SpoC algorithm, however, uses simple shift

operations in place of S-Boxes to reduce the

hardware area. Moreover, SpoC has a special feature

known as inverse free (encryption and decryption

routines are the same) which makes it very suitable

for low-cost devices.

The main contributions of this work are as follows:

• A compact hardware architecture is implemented

for both encryption and decryption routines of the

SpoC lightweight AEAD algorithm. The hardware

architecture is modeled to meet the resources

requirement of low-cost devices.

• The hardware architecture for the SpoC AEAD

algorithm is implemented and tested on an FPGA

device. The architecture is verified using simulation

modules and test results are compared to the latency

requirements of devices like RFID tags.

• Hardware synthesis and simulation results such

as area, frequency, throughput, latency, and

efficiency of the proposed SpoC implementation are

compared to the other lightweight AEAD candidates.

This is done to prove that SpoC is one of the ideal

candidates for securing low-cost devices.

The rest of this paper is organized as follows:

Section II provides background on AEAD algorithms

and summarizes the candidates that made it into the

second round of the lightweight AEAD competition,

Section III discusses some related works, Section IV

describes the hardware implementation of the SpoC

AEAD algorithm, Section V discusses the hardware

results of the algorithm, the paper is concluded in

Section VI.

The Hardware Implementation of NIST Lightweight Cryptographic Candidate SpoC for IoT Devices

13

II. BACKGROUND

The idea of an AEAD protocol is the provision of

services such as confidentiality, integrity, and

authenticity using a single algorithm. This is vital

because AEAD protocols reduce cost, increase

performance, and eliminates the security flaws of

combing different algorithms to achieve

confidentiality, integrity, and authenticity. The idea

of AEAD was first introduced by Bellare et al [10]

and has evolved over the years. The AEAD scheme

usually consists of encryption and decryption

routines. The encryption routine takes as inputs a

fixed-length secret key (K), a fixed-length public

nonce (N), a variable length associated data (AD),

and a variable-length plaintext (P). The output

consists of a variable-length ciphertext (C) and a

fixed-length tag (T). The input to the decryption

routine consists of a fixed-length key, variable length

ciphertext, fixed-length tag, and variable-length

nonce. The output consists of the plaintext or error

symbol (Ʇ) depending on the verification tag

matching the tag from the sender. The error symbol

is invalid data that is outputted to prevent adversaries

from accessing the plaintext. An overview of an

AEAD scheme is illustrated in Fig. 1.

The majority of AEAD schemes use a block

cipher primitive for encryption and various methods

for authentication [11, 12, 13]. Some of these

schemes have been analyzed and recommended by

NIST [11, 12] while others have been standardized

[13]. Recent developments have seen the rise in the

use of permutation-based functions [14] for AEAD

designs. This is mainly due to the fact that the winner

of the Secure Hash Algorithm 3 (SHA-3)

competition [9] is a permutation-based function

known as Keccak [8]. The need for a unified scheme

or a family of schemes motivated NIST to initiate the

CAESAR competition that produced six winners in

March 2019. The CAESAR competition produced

schemes that are convenient for widespread

adaptation. The CAESAR schemes are however not

tailored towards resource-constrained devices like

RFID tags and for that matter, NIST organized a

lightweight standardization process to select AEAD

schemes that are suitable for low-cost devices. The

second round of the lightweight AEAD competition

is underway and is set to last till the year 2021.

Fig. 1. Overview of AEAD Algorithm.

A. NIST Lightweight AEAD Competition

The NIST lightweight AEAD competition was

instituted to standardize algorithms for low-cost

devices used at the end nodes of IoT platforms. The

target devices of the competition consist of devices

such as RFID tags, sensors, and embedded systems.

The sensors and RFID tags are usually implemented

using ASIC technology to meet their constrained

features. Embedded systems are designed using

microcontrollers with memory as little as16 bytes.

For such devices, cryptographic protocols should be

designed to consume a minimal amount of hardware

resources.

The evaluation criteria [15] used by NIST to seed

the lightweight AEAD algorithms include security,

cost, performance, and third party analysis. The

security evaluations of the algorithms were carried

out against known attacks. The submissions were

evaluated using cost metrics such as area, memory

usage, and energy consumption. The performance

metrics include throughput, latency, and power

consumption. The third-party analysis metric favored

submission with a greater number of third party

cryptanalysis.

B. NIST AEAD Round 2 Candidates Specification

Thirty-two algorithms have made it into the NIST

lightweight AEAD competition [6]. The total number

of researchers who contributed to the thirty-two

algorithms totaled 111. The underlying constructions

of the candidates include 9 block cipher based

submission, 6 tweakable block cipher based

submissions, 16 permutation-based submissions, and

1 stream cipher based submission. The thirty-two

candidates use 21 unique cryptographic primitives

which include AES, GIFT, PYJAMASK,

SATURNIN, SKINNY, TweAES, TweGIFT,

CLYDE, Grain-128a, Simeck, XOODOO, Welch-

Gong, Subterranean, sLiSCP-light, SPARX,

PHOTON, SimP, RECTANGLE, Keccap-p,

ASCON-p, and GIMLI-24.

A total of 20 unique modes of operation were

employed by the AEAD candidates. They include

Counter (CTR), Ciphertext Feedback (CFB),

Plaintext Feedback (PFB), Hybrid Feedback (HYFB),

Output Feedback (OFB), Combined Feedback

(COFB), Beetle, Minimally XORed Feedback

(mixFeed), Offset Codebook (OCB), Small (Simple,

Slim, Sponge based) AEAD from Block cipher

(SAEB), Small Universal Deterministic

Authenticated Encryption (SUNDAE), JAMBU,

Parallel AE from a Forkcipher (PAEF), Cipher Block

Chaining (FCBC), Offset Two-Round (OTR),

International Journal of Advanced Science and Convergence 2021 Mar ; 3(1):11-20

14

Sponge One-Pass (S1P), Linear Feedback Shift

Register/Non-linear Feedback Shift Register

(LFSR/NLFSR), Sponge, Duplex, and DrySponge.

The most used mode of operation is the duplex mode

which is used by 9 out of the 32 candidates.

Some special features make some submissions

standout. The features include parallelizability,

online, and inverse free. The inverse free feature

reduces the hardware area while the parallelizability

and online features reduce latency. From the thirty-

two candidate algorithms, four candidates do not

exhibit the parallelizability and online features while

three candidates do not use the inverse free feature.

This work focuses on implementing a hardware

architecture for one of the NIST lightweight AEAD

candidates known as SpoC. This work is vital

because third party implementation of the candidate

algorithms are preferred by the NIST evaluation

team. This is because algorithm designers tend to

report false hardware results of their

implementations.

C. SpoC Lightweight AEAD Description

The SpoC lightweight AEAD algorithm is a

sponge based protocol that operates on the Beetle

mode [16]. The Beetle mode of operation is where

the ciphertext is not part of the inputs to the

permutation algorithm. This work focuses on the

SpoC’s primary recommendation which is SpoC-64.

The SpoC-64 has a capacity (c) of 128-bit, state size

(b) of 192-bit, nonce size (n) of 128-bit, tag size (t)

of 64-bit, and key size (k) of 128-bit. The core

primitive of the SpoC-64 AEAD is a lightweight

version of the Lighter Sponge-specific Cryptographic

Permutations (sLiSCP) [17] family known as

sLiSCP-light-192 [18]. This section discusses the

sLiSCP-light-192 primitive before the SpoC-64

AEAD algorithm.

D. sLiSCP-light-192 Permutation

The SpoC-64 AEAD is designed using sLiSCP-

light-192 permutation with a state size of 192-bit.

The sLiSCP-light-192 uses a four-block (each of 48-

bit labeled S0, S1, S2, and S3) Generalized Feistel

Structure (GFS) [19] with a Simeck Box (SB) [20].

The permutation uses a total of 18 steps with each

step using 6 rounds. Each of the 18 steps consists of

three stages which include Substitute_Sub_block

(SSb), Add_Step_constants (ASc), and

Mix_Sub_blocks (MSb) as shown in Fig. 2. The

permutation uses two SBs (SB1 and SB3) which are

constructed using XOR gates, rotations, and logical

AND gates. The SB takes a 48-bit input and

produces a 48-bit output. Two 6-bit round constants

rc0 and rc1 are applied to SB1 and SB3 respectively

while two-step constants (sc0 and sc1) are applied

during the ASc stage.

Fig. 2. sLiSCP-light-192 Permutation.

E. SpoC AEAD Specifications

The Beetle sponge design of the SpoC-64 AEAD

algorithm is shown in Fig. 3. At each step, the state

is divided into a concatenation of Y and Z. Four

main stages are involved in the construction which

includes initialization (init), associated data

processing (proc_ad), plaintext/ciphertext processing

(proc_pt), and tag processing (proc_tag). A 4-bit

control variable (ctrl) is used to distinguish among

the various processes. The init process shown in Fig.

3(a) initialises the state using the nonce (N = N0||N1)

and the secret key (K = K1||K2). The ctrl code for

this process is a 4-bit binary 0000. At the end of the

initialization process, Y0 and Z0 are generated. The

proc_ad processes the associated data (AD) as shown

in Fig. 3(b) using the ctrl code 0010. The proc_pt

processes the plaintext (PT) using the ctrl code 0100.

This process also generates the ciphertext (CT) as

shown in Fig. 3(c). The last process is the proc_tag

shown in Fig. 3(d). This has the responsibility of

generating the tag using the ctrl code 1000. Detailed

descriptions of each process can be found in the

SpoC specification document [6].

The Hardware Implementation of NIST Lightweight Cryptographic Candidate SpoC for IoT Devices

15

Fig. 3. Sponge Construction of SpoC AEAD.

III. RELATED WORK

The first public cryptographic competition was the

call for the Advanced Encryption Standard (AES) in

the year 1997 [21]. Subsequently, new cryptographic

competitions have an interest in third-party hardware

related results as early as possible. Third-party

hardware results for the submissions are difficult to

come by because the number of submissions

increases with each new competition while the

evaluation periods are getting shorter. The NIST

lightweight AEAD competition was announced in

August 2018 with the deadline for submission set in

February 2019. This means that cryptographers were

given exactly six months to design algorithms with

software implementation. The first-round candidates

which totaled 51 in number were announced in April

2019 which means that the evaluators at NIST used

only two months for their examination of the

submissions. The 32 second-round candidates were

announced in August 2019 which means that third-

party implementers were given just four months to

implement the 32 candidates using hardware tools.

The third-round candidates are said to be announced

in September 2020. Out of the 32 second-round

candidates, less than half submitted hardware

implementation results.

The very first third-party hardware

implementations of some of the second-round

candidates were presented by Behnaz et al. in

November 2019 [22]. The authors implemented six

of the candidates which include SpoC, GIFT-COFB,

COMET-AES, COMET-CHAM, ASCON, and

SCHWAEMM using FPGA devices. The authors

provide hardware results such as power, energy-per-

bit, frequency, area, throughput, and throughput-to-

area. The paper concluded that SpoC used the

smallest area while ASCON achieved the highest

throughput-to-area.

This paper presents the hardware implementation

of the SpoC AEAD algorithm. The advantages of the

hardware implementation presented in this work as

opposed to that in [22] include:

• This work gives detailed hardware architectures

for each module used in the SpoC AEAD algorithm

while that of [22] provides only the top module

architecture.

• This work implements both the encryption and

decryption routines of SpoC AEAD using one

hardware architecture while [22] implements only

the encryption routine.

• This work gives verification results in the form

of simulation waveforms while [22] do not provide

simulation results.

• Overall, this work achieved better results in

terms of hardware area and throughput when

compared to [22].

IV. HARDWARE IMPLEMENTATION OF

SPOC AEAD ALGORITHM

 Fig. 4 shows the overall hardware architecture

(datapath and control unit) for the SpoC AEAD

algorithm. The architecture is capable of executing

both the encryption and decryption routines. The

CONTROL UNIT is responsible for generating

select signals for the multiplexor in the DATAPATH.

The DATAPATH consists of four main registers

with include 64-bit PREG, 64-bit PCOUT, 64-bit

TOUT, and 192-bit SPREG. The PREG is used

during the decryption routine to store the generated

plaintext. The PCOUT stores the generated

plaintext/ciphertext while the TOUT stores the

generated tag. The SPREG serves as an input to the

sLiSCP-light-192 permutation module

(SLISCP_PERM). The VERIFY module is used by

only the decryption routine for verification of the

tags. This section discusses each module in the

overall architecture.

Fig. 4. Hardware Architecture for SpoC AEAD.

A. Registers

 The proposed SpoC AEAD hardware architecture

uses four registers to store data. They include PREG,

PCOUT, TOUT, and SPREG. Each register has an

input circuit that computes the value to be stored

International Journal of Advanced Science and Convergence 2021 Mar ; 3(1):11-20

16

using XOR gates and concatenation operations.

The PREG is a 64-bit register that is only used

during the decryption routine to store the generated

plaintext. The input circuit computes the plaintext

using two 32-bit XOR gates and concatenates the

outputs of the XOR operation to get a 64-bit value as

shown in Fig. 5. The inputs to the XOR gates consist

of the ciphertext (pc_in[63:0]) and the output from

the permutation module ({sout[191:160],

sout[95:64]}). The PREG value is given to the

PCOUT register after the decryption routine is

complete.

The PCOUT is a 64-bit register that stores the

generated plaintext or ciphertext depending on

whether the encryption or decryption routine is

executed. The inputs to the register use two 32-bit

XOR gates, two multiplexors, and 64-bit

concatenation to compute the value stored in the

register as shown in Fig. 6. The inputs to the XOR

gates consist of the plaintext/ciphertext input

(pc_in[63:0]) and the output from the permutation

module ({sout[191:160], sout[95:64]}). The outputs

from the XOR gates are concatenated to get a 64-bit

value. The multiplexor 1 selects between the 64-bit

PREG output (preg[63:0]) and 64’d0 which indicates

a null value when the decryption verification fails.

The multiplexor 2 selects between the concatenated

value and the output of multiplexor 1 when

executing encryption and decryption respectively.

The TOUT register store the generated 64-bit

during both encryption and decryption routines using

only the concatenation operator as shown in Fig. 7.

The input to the register concatenates two 32-bit part

selects from the output of the permutation module

(sout[47:16] and sout[143:112]).

The SPREG is a 192-bit register that serves as an

input to the sLiSCP-light-192 permutation module.

This has the most complicated input circuitry among

all the registers as shown in Fig. 8. The circuit uses a

total of six 32-bit input XORs, three multiplexors,

and four concatenation operators. The inputs to the

first concatenation are the key (k) and the nonce (n),

this is selected during the initialization process. The

second concatenation inputs include n and sout

which is selected during the nonce processing. The

third concatenation is selected during the tag

processing while the last concatenation is selected

during the plaintext/ciphertext processing.

Fig. 5. PREG Register Input Circuit.

Fig. 6. PCOUT Register Input Circuit.

Fig. 7. TOUT Register Input Circuit.

Fig. 8. SPREG Register Input Circuit.

B. Hardware Architecture for sLiSCP-light-192

The proposed hardware architecture for the

sLiSCP-light-192 permutation (illustrated in Fig. 2)

is shown in Fig. 9. The architecture implements

memory element RC_SC_RAM which stores the

value of the round constants (rc0 and rc1) and step

constants (sc0 and sc1). The constants are generated

based on the rounds (rnd). During the SSb stage, the

con[15:0] represents the concatenation of rc0 and rc1

while it represents the concatenation of sc0 and sc1

during the ASb stage. The RC_SC_RAM is a simple

memory that stores a total of 512 bits of data.

The architecture input is the 192-bit register

SPREG and produces 192-bit value stored in DREG

register. It consists of 48-bit registers S0, S1, S2, S3,

and 192-bit register DREG. SB1 and SB3 implement

the Simeck box which will be discussed later in this

section. The inputs to S0 and S2 registers are the

outputs of SB1 (sout1) and SB3 (sout3) respectively.

The input of register S1 is computed by the XORing

of sout3, concatenation ({40’hFFFFFFFFFF,

con[7:0]}), and either dreg[95:0] or spreg[95:48].

The input of register S3 is computed by the XORing

of sout1, concatenation ({40’hFFFFFFFFFF,

The Hardware Implementation of NIST Lightweight Cryptographic Candidate SpoC for IoT Devices

17

con[15:8]}), and either dreg[191:144] or

spreg[191:144]. The input to the DREG register is

the concatenation of the four registers S0, S1, S2,

and S3. The architecture uses a total of two XOR

gates, four multiplexors, and three concatenation

operators.

Fig. 9. SLiSCP-light-192 Hardware Architecture.

The input to SB1 consist of con[15:0] and either

dreg[143:96] or spreg[143:96] while that of SB3 is

made up of con[7:0] and either dreg[47:0] or

spreg[47:0]. The hardware implementation of SB1 is

shown in Fig. 10. The same architecture is also used

by S3 by just changing the inputs. From the diagram,

a 48-bit input din[47:0] is used to produce a 48-bit

output sout1[47:0]. The architecture stores the

shifted value of con[7:0] in the CREG register. The

Least Significant Bit (LSB) of the CREG register is

fed into the SRND module during every round. The

SRND module implements the actual Simeck box

using four concatenations, one XOR gate, and one

AND gate as shown in the figure. The SRND module

iterates for six rounds which means that the proposed

architecture produces the output using exactly six

clock cycles.

Fig. 10. Simeck Box (SB) Hardware Architecture.

C. Verification and Control Units

The Verification Unit (VERIFY) is only activated

during the decryption routine. It takes as its inputs

the 64-bit tag (t_in) from the sender and the

computed tag stored in the TOUT register (t_out) as

shown the Fig. 4. The VERIFY module compares the

t_in value to the t_out value. If the comparison is

true, the computed plaintext is assigned to the output

(pc_out). This indicates that the received tag is from

a genuine sender. If the comparison is false, a null

value is assigned to the pc_out to prevent adversaries

from getting access to the plaintext.

The CONTROL unit generates select signals for

the multiplexors in the overall hardware architecture.

This is done by implementing a Finite State Machine

(FSM) with a total of seven states. The transition of

the states is dependent on the availability of the

plaintext/ciphertext (PT) and the associated data

(AD) as shown in Table 1. From the table, a 0

indicates empty PT/CT and AD while a 1 indicates

full PT/CT and AD. The seven states include

load_init, ad, pt_ct, xor_pt, tag, tag_extract, and

finish. The load_init state initializes and loads the

inputs during the start of operations. The ad state is

responsible for associated data processing while the

pt_ct state is for plaintext/ciphertext processing. The

xor_pt state is used during the decryption process to

compute the plaintext. The tag and tag_extract states

are used to generate the verification tag while the

finish state verifies the tag and halts the algorithm.

The various state transitions for both the encryption

and decryption routines are illustrated in Table 1.

Table 1. FSM STATE TRANSITIONS

PT/

CT
AD

Enc State

Transition
Enc State Transition

0 0

load_init → tag

→ tag_extract →

finish

load_init → tag →

tag_extract → finish

1 0

load_init → pt_ct

→ tag →

tag_extract →

finish

load_init → pt_ct →

xor_pt → tag

→ tag_extract → finish

0 1

load_init → ad

→ tag →

tag_extract

→ finish

load_init → ad → tag →

tag_extract → finish

1 1

load_init → ad

→ pt_ct → tag

→ tag_extract →

finish

load_init → ad → pt_ct →

xor_pt → tag →

tag_extract → finish

International Journal of Advanced Science and Convergence 2021 Mar ; 3(1):11-20

18

V. HARDWARE RESULTS AND

VERIFICATION

The hardware architecture of the SpoC AEAD

algorithm discussed in Section 4 was implemented

on an FPGA device and developed using Verilog

Hardware Description Language (HDL). The

synthesis results were generated using Xilinx ISE

14.7 software with a Virtex-4 FPGA device

(xc4vlx80-12ff1148). The synthesis results reported

the maximum frequency (Freq) and area in terms of

Look-up-Tables (LUTs). The higher the frequency of

a design, the lower the delay (a combination of gate

delay and wire delay). The lower the number of

LUTs the better for resource-constrained devices.

The latency of the design was calculated in terms of

the number of cycles (cyc) using the equation below:

cyc=init_ld+N+(ADc*AD)+(PTCTc*PT_CT)+TG

Where init_ld represents the cycles for

initialization and loading the permutation module

while TG represents the cycles for tag processing.

ADc and PTCTc represent the cycles for the

associated data processing and the

plaintext/ciphertext processing respectively while

AD and PTCT represent the total number of

associated data and plaintext/ciphertext blocks

respectively. The lower the number of cycles the

faster the design. The frequency, area, and cycle

metrics are used to compute the throughput (TP) and

Throughput-to-Area (TPA) metrics. The TP metric is

computed by dividing the block size by the cycles

and multiplying by the frequency (Freq x Blk /

Cycles) while the TPA metric is computed by

dividing the TP value by the area (TP/area). TPA

metric is a very important parameter for comparing

hardware implementations. This metric shows

clearly the attempt of a hardware designer to

significantly optimize one characteristic of a design

(either area or throughput) at the expense of another.

The synthesis results for the SpoC AEAD

algorithm are shown in Table 2. The hardware

implementation consumed 951 LUTs at 246.6 MHz

maximum clock frequency with 589 cycles for

encryption (590 cycles for decryption), TP of 26.8,

and TPA of 0.03. The results from this work are

compared to that of [22] which implemented SpoC,

ASCON, COMET-CHAM, COMET-AES, and

GIFT-COFB. When compared to the SpoC

implementation in [22], this work used 30% fewer

LUTs for both encryption and decryption. The

decrease in area in this work is a result of the

optimization of the implementation for low-cost

devices while [22] implemented the basic iterative

architecture without optimizing. This work achieved

almost two times the frequency of the SpoC

implemented in [22]. The SpoC implementation in

[22] used 150 fewer cycles as compared to this work.

This is because this work implemented the SpoC

using extra registers in other to reduce the critical

path which increases the frequency. The increase in

frequency and reduced area resulted in this work

recording better results in terms of TP (Mbps) and

TPA (Mbps/LUT) than the implementation in [22].

Table 2. SYNTHESIS RESULTS AND COMPARISONS

Algo

rithm

Blk

(Bit)
Rnd

Freq

(MHz)

Area

LUT
Cyc TP TPA

GIF

T-
COB

E

[22]

128 40 134.3 1960 205 83.9 0.04

CO
MET

-

AES
[22]

128 10 128.6 3058 73 225 0.07

CO

MET
-

CHA

M
[22]

128 80 145.5 2338 357 52.2 0.02

ASC

ON

[22]

64 12 174.4 1913 68 164 0.08

Spo

C

[22]

64 108 131 1364 439 19.1 0.01

Spo
C

[This

Wor
k]

64 108 246.6 951 589 26.8 0.03

The hardware implementation of the SpoC AEAD

algorithm was verified through simulation using

Xilinx ISE Simulator (ISIM). The test vectors for the

simulation were obtained from [23]. For the

encryption routine, the key and the nonce use the

same 128-bit value

(128’h000102030405060708090A0B0C0D0E0F0)

while the associated data (ad) and plaintext also use

the same 64-bit value (64’h0001020304050607). The

generated 64-bit ciphertext (ct) and tag are

64’h01DCF91B896496FC and

64’h0CCCDBEC61B55102 respectively as shown in

Fig. 11. The encryption routine uses a total of 589

clock cycles. For the decryption routine, the key,

nonce, associated data use the same values as the

encryption routine with a 64-bit ciphertext

(64’01DCF91B896496FC) and a 64-bit tag

(64’h0CCCDBEC61B55102). The generated 64-bit

plaintext (pt) and tag are 64’h0001020304050607

and 64’h0CCCDBEC61B55102 respectively as

shown in Fig. 12. The encryption routine uses a total

of 590 clock cycles.

A popular platform for the execution of

lightweight cryptographic algorithms is the

The Hardware Implementation of NIST Lightweight Cryptographic Candidate SpoC for IoT Devices

19

Electronic Product Code (EPC) [24] RFID tags.

These tags are part of the target devices of the NIST

lightweight AEAD competition. The EPC tags are

passively powered and for that matter, many research

works [25, 26, 27] consider a clock frequency of 100

kHz as the upper bound for the tags. It is a common

notion that the authentication of the EPC tags should

take less than 150 msec for the whole process [28].

With the 150 msec authentication time and the 100

kHz clock frequency, the maximum number of

cycles required for the authentication of a tag is set at

15,000 clock cycles. From our simulation results, the

encryption and decryption routines of the proposed

SpoC AEAD hardware architecture used 589 and

590 clock cycles respectively. This indicates that the

proposed SpoC hardware architecture meets the

latency requirements of the real-world low-cost

hardware devices.

Fig. 11. Simulation of SpoC AEAD Enc Routine.

Fig. 12. Simulation of SpoC AEAD Dec Routine.

VI. CONCLUSION

 The search for lightweight AEAD algorithms by

NIST for resource-constrained devices like RFID

tags has entered into the second round. The

examiners of the second-round candidates are

advocating for third party hardware implementations

(ASIC or FPGA) of the 32 second-round candidates.

This paper, therefore, provides a hardware

implementation of the SpoC AEAD algorithm that

made it into the second round of the NIST

competition. The implemented version is the SpoC-

64 which is made up of a 128-bit key, 128-bit nonce,

64-bit plaintext, 64-bit associated data, 64-bit tag,

and a 64-bit ciphertext. The SpoC AEAD is sponge-

based which uses the Beetle mode of operation with

the sLiSCP-light-192 permutation as the primary

primitive for the algorithm.

The proposed SpoC AEAD algorithm hardware

architecture was designed using Verilog HDL with

Xilinx ISE 14.7 used for synthesis (using Virtex-4

FPGA device) and ISIM for simulation. The

synthesis and simulation reports provided the

maximum frequency, area, cycles, throughput (TP),

and throughput-to-area (TPA). The proposed SpoC

AEAD hardware architecture consumed 951 LUTs,

achieved a maximum frequency of 246.61 MHz,

used 589 and 590 clock cycles for encryption and

decryption respectively, recorded a TP of 26.8 Mbps,

and a TPA ratio of 0.03.

The results from this work were compared to an

existing third-party hardware implementation of the

SpoC algorithm. This work used 30% fewer LUTs

for both encryption and decryption as compared to

the existing work. The decrease in area in this work

is a result of the optimization of the implementation

for low-cost devices while the existing work

implemented the basic iterative architecture without

optimizing. This work achieved almost two times the

frequency of the existing SpoC implementation. The

existing SpoC implementation used 150 fewer cycles

as compared to this work. This is because this work

implemented the SpoC using extra registers in other

to reduce the critical path which increases the

frequency. The increase in frequency and reduced

area resulted in this work recording better results in

terms of TP and TPA than the existing

implementation.

The latency results (clock cycles) used by the

proposed SpoC hardware design were compared to

the real-world EPC RFID tags authentication time.

These tags are part of the target devices of the NIST

lightweight AEAD competition. The maximum

number of cycles required for the authentication of a

tag is set at 15,000 clock cycles. From our simulation

results, the encryption and decryption routines of the

proposed SpoC AEAD hardware architecture used

589 and 590 clock cycles respectively. This indicates

that the proposed SpoC hardware architecture meets

the latency requirements of the real-world low-cost

hardware devices.

For future works, the proposed SpoC AEAD will

be combined with other security protocols to form a

lightweight cryptographic System-on-Chip (SoC).

International Journal of Advanced Science and Convergence 2021 Mar ; 3(1):11-20

20

REFERENCES

[1] Schwab, K. (2020). The fourth industrial

revolution. Retrieved

from https://www.weforum.org/about/the-fourth-

industrial-revolution-by-klaus-schwab

[2] Choi, S., Yang, C., & Kwak, J. (2018). System

hardening and security monitoring for IoT devices to

mitigate IoT security vulnerabilities and Threats. KSII

Transaction on Internet and Information Systems,

12(2), 906-918.

[3] National Institute of Standards and Technology.

(2020). CAESAR call for submission. Retrieved

from https://competitions.cr.yp.to/caesar-call.html

[4] National Institute of Standards and Technology.

(2020). CAESAR submission. Retrieved

from https://competitions.cr.yp.to/caesar-

submissioans.html

[5] National Institute of Standards and Technology.

(2020). Announcing request for nomination for

lightweight cryptographic algorithms. Retrieved

from https://csrc.nist.gov/News/2018/requesting-

nominations-for-lightweight-crypto-algs

[6] National Institute of Standards and Technology.

(2020). Round 2 candidates. Retrieved

from https://csrc.nist.gov/Projects/lightweight-

cryptography/round-2-candidates

[7] AITawy, R., Gong, G., He, M., Jha, A., Mandal, K.,

Nandi, M., & Rohit, R. (2020). SpoC: An

authenticated cipher submission to the NIST LWC

competition. Retrieved

from https://csrc.nist.gov/CSRC/media/Projects/light

weight-cryptography/documents/round-2/spec-doc-

rnd2/spoc-spec-round2.pdf

[8] Bertoni, G., Daemen, J., Peeters, M., & Assche, G. V.

(2020). Keccak specification. Retrieved

from https://keccak.team/obsolete/Keccak-

specifications.pdf

[9] National Institute of Standards and Technology.

(2020). Cryptographic hash algorithm

competition. Retrieved

from https://www.nist.gov/programs-

projects/cryptographic-hash-algorithm-competition

[10] Bellare, M. & Namprempre, C. (2008). Authenticated

encryption: Relations among notions and analysis of

generic composition paradigm. Journal of Cryptology,

21(4), 469-491.

[11] Whiting, D., Housley, R., & Ferguson, N.

(2020). Counter with CBC-MAC (CCM). Retrieved

from https://tools.ietf.org/rfc/rfc3610.txt

[12] McGrew, D. A. & Viega, J. (2004). The security and

performance of the Galois/Counter Mode (GCM) of

operation. Progress in Cryptology – INDOCRYPT

2004, 343-355.

[13] Rogaway, P., Bellare, M., & Black, J. (2003). OCB:

A block-cipher mode of operation for efficient

authenticated encryption. ACM Transaction on

Information and System Security, 6(3), 365-403.

[14] Bertoni, G., Daemen, J., Peeters, M., & Assche, G. V.

(2011). Duplexing the sponge: Single-pass

authenticated encryption and other applications.

Selected Areas in Cryptography – SAC 2011, 320-337.

[15] National Institute of Standards and Technology.

(2020). Submission requirement and evaluation

criteria for the lightweight cryptography submission

process. Retrieved

from https://csrc.nist.gov/CSRC/media/Projects/Light

weight-Cryptography/documents/final-lwc-

submission-requirements-august2018.pdf

[16] Chakraborti, A., Datta, N., Nandi, M., & Yasuda, K.

(2018). OCB: Beetle family of lightweight and secure

authenticated encryption ciphers. IACR Transaction

on Cryptographic Hardware and Embedded Systems,

2018(2), 218-241.

[17] AITawy, R., Rohit, R., He, M., Mandal, K., Yang, G.,

& Gong, G. (2017). sLiSCP: Simec-based

permutations for lightweight sponge cryptographic

primitives. Selected Areas in Cryptography – SAC

2017, 129-150.

[18] AITawy, R., Rohit, R., He, M., Mandal, K., Yang, G.,

& Gong, G. (2018). sLiSCP-light: Towards hardware

optimized sponge-specific cryptographic permutations.

ACM Transaction on Embedded Computing Systems,

17(4), 1-32.

[19] Bogdanov, A. & Shibutani, K. (2012). Generalized

Feistel networks revisited. Design, Codes, and

Cryptography, 66(3), 75-97.

[20] Yang, G., Zhu, B., Suder, V., Aagaard, M. D. & Gong,

G. (2015). The Simeck family of lightweight block

ciphers. Cryptographic Hardware and Embedded

Systems – CHES 2015, 13-16.

[21] National Institute of Standards and Technology.

(2020). Announcing request for candidate algorithm

nominations for the advanced encryption

standard. Retrieved

from https://csrc.nist.gov/news/1997/requesting-

candidate-algorithm-nominations-for-aes

[22] Rezvani, B., Coleman, F., Sachin, S., & Diehl, W.

(2019). Hardware implementation of NIST

lightweight cryptographic candidates: A first look.

Lightweight Cryptography Workshop 2019, 1-12.

[23] Renner, S., Pozzobon, E., & Mottok, J.

(2020). spoc64sliscplight192v1. Retrieved

from https://lwc.las3.de/cipher.php?variant=spoc64sli

scplight192v1

[24] GSI. (2020). EPC UHF Gen2 air interface

protocol. Retrieved

from https://www.gs1.org/standards/epc-rfid/uhf-air-

interface-protocol

[25] Bogdanov, A. & Shibutani, K. (2019). Generalized

Feistel networks revisited. International Association

of Cryptologic Research, ePrint Archive, 2009, 1-197.

[26] Feldhofer, M., Dominikus, S., & Wolkerstorfer, J.

(2004). Strong authentication for RFID systems using

the AES algorithm. Cryptographic Hardware and

Embedded Systems, 357-370.

[27] Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-

Tapiador, J. M., & Ribagorda, A. (2007). LAMED –

A PRNG for EPC Class-1 Generation-2 RFID

specification. Computer Standards and Interfaces,

31(2009), 88-97.

[28] Armknecht, F., Hamann, M., & Mikhalev, V. (2014).

Lightweight authentication protocols on ultra-

constrained RFIDs – Myths and facts. Radio

Frequency Identification: Security and Privacy Issues

– RFIDSec 2014, 1-18.

