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Abstract1 

Background/Objectives: This paper presents the hardware implementation of SpoC Lightweight 
Cryptography (LWC) candidate for low-cost devices. Methods/Statistical analysis: The proposed hardware 
implementation of the SpoC Authenticated Encryption with Associated Data (AEAD) is capable of both 
encryption and decryption. The design was implemented on the Virtex-4 Field FPGA using Xilinx ISE Design 
Suite. The synthesis results reported 951 slices at 246.61 MHz maximum clock frequency. The encryption 
and decryption routines take 589 and 590 cycles. Findings: This work used 30% fewer LUTs for both 
encryption and decryption as compared to the existing work. The decrease in area in this work is a result of 
the optimization of the implementation for low-cost devices while the existing work implemented the basic 
iterative architecture without optimizing. This work achieved almost two times the frequency of the existing 
SpoC implementation. The existing SpoC implementation used 150 fewer cycles as compared to this work. 
This is because this work implemented the SpoC using extra registers in other to reduce the critical path 
which increases the frequency. Improvements/Applications: For future works, the proposed SpoC AEAD will 
be combined with other security protocols to form a lightweight cryptographic System-on-Chip (SoC).   
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I. INTRODUCTION 

The Internet of Things (IoT) is said to be the 

fourth industrial revolution [1]. This is a 

technological revolution that has significantly 

changed the way we interact with others, live, and 

work. The backbone of IoT is composed of 

extremely low cost and resource-constrained devices 

that gather, process, store and transmit sensitive 

information. The devices are constrained in terms of 

computational complexity, power, and storage to 

reduce the cost of mass deployment. Since 

communication among IoT devices is mainly 

through insecure channels, security issues such as 

confidentiality, integrity, and authenticity [2] can be 

applied to the devices. Confidentiality deals with an 

adversary’s ability to access private communication, 

integrity deals with the ability to detect a change in 

transmitted information while authenticity deals with 

the ability to identify the sender of a message. To 

reduce the cost of securing computing devices, a 

single algorithm can be used to ensure confidentiality, 

integrity, and authenticity. This algorithm is known 

as Authenticated Encryption with Associated Data 

(AEAD).  

For the past decade, there has been a high need for 

AEAD schemes, and for that matter, NIST issued the 

Competition for Authenticated Encryption: Security, 

Applicability, and Robustness (CAESER) contest in 

January 2013 [3]. The CAESAR contest was to 

standardize Authenticated Encryption (AE) for 

conventional computing devices. The contest ended 

in March 2019 [4] of which six submissions were 

declared winners. During the CAESAR contest, 

NIST realized that most of the submissions were not 

tailored towards low-cost devices like sensors, smart 

cards, and RFID tags. This lead NIST to issue a call 

for lightweight AEAD schemes in August 2018 as 

part of the LWC standardization process [5]. The 

lightweight AEAD contest has now entered the 

second round with thirty-two candidates [6] 

announced in August 2019. The contest is due to end 

in the year 2021. The submissions for the lightweight 

AEAD contest are evaluated in resource-constrained 

environments using hardware metrics such as area, 

power consumption, memory, throughput, and 

latency. The NIST evaluation team of the contest has 

called for third-party hardware implementation of the 

second-round candidates using Application-Specific 

Integrated Circuit (ASIC) and FPGA tools. 

The first step in the evaluation of a cryptographic 

algorithm for low-cost devices is to measure the 

hardware resources consumed by the algorithm. This 

paper, therefore, proposes and implements a 

hardware architecture for SpoC lightweight AEAD 

algorithm [7]. SpoC is one of the submissions that 

made it into the second round of the NIST 

lightweight AEAD competition. The rationale for 

selecting SpoC out of the thirty-two candidates can 

be summarized as below: 

• Security: SpoC employs 128-bit security which 

is sufficient for low-cost devices. Moreover, several 

third-party cryptanalyses of the algorithm found no 

weakness or errors in the specification. SpoC also 

meets the minimum-security guarantees for 

confidentiality and integrity that NIST set for the 

lightweight AEAD competition. 

• Underlying construction: SpoC mode of 

operation is permutation-based which has become 

popular over the last decade. The efficiency of the 

permutation-based mode of operation coupled with 

Keccak [8] (a permutation-based candidate) winning 

the Secure Hash Algorithm 3 (SHA-3) [9] 

competition has made algorithms with such 

constructions preferable. 

• Estimated hardware footprint: Most of the 

algorithms that made it into the second round of the 

NIST lightweight AEAD competition make use of 

Substitution-Boxes (S-Boxes) which take up a lot of 

hardware resources and memory to implement. The 

SpoC algorithm, however, uses simple shift 

operations in place of S-Boxes to reduce the 

hardware area. Moreover, SpoC has a special feature 

known as inverse free (encryption and decryption 

routines are the same) which makes it very suitable 

for low-cost devices. 

The main contributions of this work are as follows: 

• A compact hardware architecture is implemented 

for both encryption and decryption routines of the 

SpoC lightweight AEAD algorithm. The hardware 

architecture is modeled to meet the resources 

requirement of low-cost devices.  

• The hardware architecture for the SpoC AEAD 

algorithm is implemented and tested on an FPGA 

device. The architecture is verified using simulation 

modules and test results are compared to the latency 

requirements of devices like RFID tags.   

• Hardware synthesis and simulation results such 

as area, frequency, throughput, latency, and 

efficiency of the proposed SpoC implementation are 

compared to the other lightweight AEAD candidates. 

This is done to prove that SpoC is one of the ideal 

candidates for securing low-cost devices. 

The rest of this paper is organized as follows: 

Section II provides background on AEAD algorithms 

and summarizes the candidates that made it into the 

second round of the lightweight AEAD competition, 

Section III discusses some related works, Section IV 

describes the hardware implementation of the SpoC 

AEAD algorithm, Section V discusses the hardware 

results of the algorithm, the paper is concluded in 

Section VI. 
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II. BACKGROUND 

The idea of an AEAD protocol is the provision of 

services such as confidentiality, integrity, and 

authenticity using a single algorithm. This is vital 

because AEAD protocols reduce cost, increase 

performance, and eliminates the security flaws of 

combing different algorithms to achieve 

confidentiality, integrity, and authenticity. The idea 

of AEAD was first introduced by Bellare et al [10] 

and has evolved over the years. The AEAD scheme 

usually consists of encryption and decryption 

routines. The encryption routine takes as inputs a 

fixed-length secret key (K), a fixed-length public 

nonce (N), a variable length associated data (AD), 

and a variable-length plaintext (P). The output 

consists of a variable-length ciphertext (C) and a 

fixed-length tag (T). The input to the decryption 

routine consists of a fixed-length key, variable length 

ciphertext, fixed-length tag, and variable-length 

nonce. The output consists of the plaintext or error 

symbol (Ʇ) depending on the verification tag 

matching the tag from the sender. The error symbol 

is invalid data that is outputted to prevent adversaries 

from accessing the plaintext. An overview of an 

AEAD scheme is illustrated in Fig. 1. 

The majority of AEAD schemes use a block 

cipher primitive for encryption and various methods 

for authentication [11, 12, 13]. Some of these 

schemes have been analyzed and recommended by 

NIST [11, 12] while others have been standardized 

[13]. Recent developments have seen the rise in the 

use of permutation-based functions [14] for AEAD 

designs. This is mainly due to the fact that the winner 

of the Secure Hash Algorithm 3 (SHA-3) 

competition [9] is a permutation-based function 

known as Keccak [8]. The need for a unified scheme 

or a family of schemes motivated NIST to initiate the 

CAESAR competition that produced six winners in 

March 2019. The CAESAR competition produced 

schemes that are convenient for widespread 

adaptation. The CAESAR schemes are however not 

tailored towards resource-constrained devices like 

RFID tags and for that matter, NIST organized a 

lightweight standardization process to select AEAD 

schemes that are suitable for low-cost devices. The 

second round of the lightweight AEAD competition 

is underway and is set to last till the year 2021. 

 

 
Fig. 1.  Overview of AEAD Algorithm.  

 

A. NIST Lightweight AEAD Competition 

The NIST lightweight AEAD competition was 

instituted to standardize algorithms for low-cost 

devices used at the end nodes of IoT platforms. The 

target devices of the competition consist of devices 

such as RFID tags, sensors, and embedded systems. 

The sensors and RFID tags are usually implemented 

using ASIC technology to meet their constrained 

features. Embedded systems are designed using 

microcontrollers with memory as little as16 bytes. 

For such devices, cryptographic protocols should be 

designed to consume a minimal amount of hardware 

resources. 

The evaluation criteria [15] used by NIST to seed 

the lightweight AEAD algorithms include security, 

cost, performance, and third party analysis. The 

security evaluations of the algorithms were carried 

out against known attacks. The submissions were 

evaluated using cost metrics such as area, memory 

usage, and energy consumption. The performance 

metrics include throughput, latency, and power 

consumption. The third-party analysis metric favored 

submission with a greater number of third party 

cryptanalysis. 

 

B. NIST AEAD Round 2 Candidates Specification 

Thirty-two algorithms have made it into the NIST 

lightweight AEAD competition [6]. The total number 

of researchers who contributed to the thirty-two 

algorithms totaled 111. The underlying constructions 

of the candidates include 9 block cipher based 

submission, 6 tweakable block cipher based 

submissions, 16 permutation-based submissions, and 

1 stream cipher based submission. The thirty-two 

candidates use 21 unique cryptographic primitives 

which include AES, GIFT, PYJAMASK, 

SATURNIN, SKINNY, TweAES, TweGIFT, 

CLYDE, Grain-128a, Simeck, XOODOO, Welch-

Gong, Subterranean, sLiSCP-light, SPARX, 

PHOTON, SimP, RECTANGLE, Keccap-p, 

ASCON-p, and GIMLI-24. 

A total of 20 unique modes of operation were 

employed by the AEAD candidates. They include 

Counter (CTR), Ciphertext Feedback (CFB), 

Plaintext Feedback (PFB), Hybrid Feedback (HYFB), 

Output Feedback (OFB), Combined Feedback 

(COFB), Beetle, Minimally XORed Feedback 

(mixFeed), Offset Codebook (OCB), Small (Simple, 

Slim, Sponge based) AEAD from Block cipher 

(SAEB), Small Universal Deterministic 

Authenticated Encryption (SUNDAE), JAMBU, 

Parallel AE from a Forkcipher (PAEF), Cipher Block 

Chaining (FCBC), Offset Two-Round (OTR), 
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Sponge One-Pass (S1P), Linear Feedback Shift 

Register/Non-linear Feedback Shift Register 

(LFSR/NLFSR), Sponge, Duplex, and DrySponge. 

The most used mode of operation is the duplex mode 

which is used by 9 out of the 32 candidates. 

Some special features make some submissions 

standout. The features include parallelizability, 

online, and inverse free. The inverse free feature 

reduces the hardware area while the parallelizability 

and online features reduce latency. From the thirty-

two candidate algorithms, four candidates do not 

exhibit the parallelizability and online features while 

three candidates do not use the inverse free feature. 

This work focuses on implementing a hardware 

architecture for one of the NIST lightweight AEAD 

candidates known as SpoC. This work is vital 

because third party implementation of the candidate 

algorithms are preferred by the NIST evaluation 

team. This is because algorithm designers tend to 

report false hardware results of their 

implementations. 

 

C. SpoC Lightweight AEAD Description 

The SpoC lightweight AEAD algorithm is a 

sponge based protocol that operates on the Beetle 

mode [16]. The Beetle mode of operation is where 

the ciphertext is not part of the inputs to the 

permutation algorithm. This work focuses on the 

SpoC’s primary recommendation which is SpoC-64. 

The SpoC-64 has a capacity (c) of 128-bit, state size 

(b) of 192-bit, nonce size (n) of 128-bit, tag size (t) 

of 64-bit, and key size (k) of 128-bit. The core 

primitive of the SpoC-64 AEAD is a lightweight 

version of the Lighter Sponge-specific Cryptographic 

Permutations (sLiSCP) [17] family known as 

sLiSCP-light-192 [18]. This section discusses the 

sLiSCP-light-192 primitive before the SpoC-64 

AEAD algorithm. 

 

D. sLiSCP-light-192 Permutation 

The SpoC-64 AEAD is designed using sLiSCP-

light-192 permutation with a state size of 192-bit. 

The sLiSCP-light-192 uses a four-block (each of 48-

bit labeled S0, S1, S2, and S3) Generalized Feistel 

Structure (GFS) [19] with a Simeck Box (SB) [20]. 

The permutation uses a total of 18 steps with each 

step using 6 rounds. Each of the 18 steps consists of 

three stages which include Substitute_Sub_block 

(SSb), Add_Step_constants (ASc), and 

Mix_Sub_blocks (MSb) as shown in Fig. 2. The 

permutation uses two SBs (SB1 and SB3) which are 

constructed using XOR gates, rotations, and logical 

AND gates. The SB takes a 48-bit input and 

produces a 48-bit output. Two 6-bit round constants 

rc0 and rc1 are applied to SB1 and SB3 respectively 

while two-step constants (sc0 and sc1) are applied 

during the ASc stage. 

 

 
Fig. 2.  sLiSCP-light-192 Permutation.  

 

E. SpoC AEAD Specifications 

The Beetle sponge design of the SpoC-64 AEAD 

algorithm is shown in Fig. 3. At each step, the state 

is divided into a concatenation of Y and Z. Four 

main stages are involved in the construction which 

includes initialization (init), associated data 

processing (proc_ad), plaintext/ciphertext processing 

(proc_pt), and tag processing (proc_tag). A 4-bit 

control variable (ctrl) is used to distinguish among 

the various processes. The init process shown in Fig. 

3(a) initialises the state using the nonce (N = N0||N1) 

and the secret key (K = K1||K2). The ctrl code for 

this process is a 4-bit binary 0000. At the end of the 

initialization process, Y0 and Z0 are generated. The 

proc_ad processes the associated data (AD) as shown 

in Fig. 3(b) using the ctrl code 0010. The proc_pt 

processes the plaintext (PT) using the ctrl code 0100. 

This process also generates the ciphertext (CT) as 

shown in Fig. 3(c). The last process is the proc_tag 

shown in Fig. 3(d). This has the responsibility of 

generating the tag using the ctrl code 1000. Detailed 

descriptions of each process can be found in the 

SpoC specification document [6]. 
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Fig. 3.  Sponge Construction of SpoC AEAD.  

 

 

III. RELATED WORK 

The first public cryptographic competition was the 

call for the Advanced Encryption Standard (AES) in 

the year 1997 [21]. Subsequently, new cryptographic 

competitions have an interest in third-party hardware 

related results as early as possible. Third-party 

hardware results for the submissions are difficult to 

come by because the number of submissions 

increases with each new competition while the 

evaluation periods are getting shorter. The NIST 

lightweight AEAD competition was announced in 

August 2018 with the deadline for submission set in 

February 2019. This means that cryptographers were 

given exactly six months to design algorithms with 

software implementation. The first-round candidates 

which totaled 51 in number were announced in April 

2019 which means that the evaluators at NIST used 

only two months for their examination of the 

submissions. The 32 second-round candidates were 

announced in August 2019 which means that third-

party implementers were given just four months to 

implement the 32 candidates using hardware tools. 

The third-round candidates are said to be announced 

in September 2020. Out of the 32 second-round 

candidates, less than half submitted hardware 

implementation results.   

The very first third-party hardware 

implementations of some of the second-round 

candidates were presented by Behnaz et al. in 

November 2019 [22]. The authors implemented six 

of the candidates which include SpoC, GIFT-COFB, 

COMET-AES, COMET-CHAM, ASCON, and 

SCHWAEMM using FPGA devices. The authors 

provide hardware results such as power, energy-per-

bit, frequency, area, throughput, and throughput-to-

area. The paper concluded that SpoC used the 

smallest area while ASCON achieved the highest 

throughput-to-area. 

This paper presents the hardware implementation 

of the SpoC AEAD algorithm. The advantages of the 

hardware implementation presented in this work as 

opposed to that in [22] include: 

• This work gives detailed hardware architectures 

for each module used in the SpoC AEAD algorithm 

while that of [22] provides only the top module 

architecture. 

• This work implements both the encryption and 

decryption routines of SpoC AEAD using one 

hardware architecture while [22] implements only 

the encryption routine. 

• This work gives verification results in the form 

of simulation waveforms while [22] do not provide 

simulation results. 

• Overall, this work achieved better results in 

terms of hardware area and throughput when 

compared to [22]. 
 

 

IV. HARDWARE IMPLEMENTATION OF 

SPOC AEAD ALGORITHM 

 Fig. 4 shows the overall hardware architecture 

(datapath and control unit) for the SpoC AEAD 

algorithm. The architecture is capable of executing 

both the encryption and decryption routines. The 

CONTROL UNIT is responsible for generating 

select signals for the multiplexor in the DATAPATH. 

The DATAPATH consists of four main registers 

with include 64-bit PREG, 64-bit PCOUT, 64-bit 

TOUT, and 192-bit SPREG. The PREG is used 

during the decryption routine to store the generated 

plaintext. The PCOUT stores the generated 

plaintext/ciphertext while the TOUT stores the 

generated tag. The SPREG serves as an input to the 

sLiSCP-light-192 permutation module 

(SLISCP_PERM). The VERIFY module is used by 

only the decryption routine for verification of the 

tags. This section discusses each module in the 

overall architecture. 

 

 
Fig. 4.  Hardware Architecture for SpoC AEAD.  

 

A. Registers 

 The proposed SpoC AEAD hardware architecture 

uses four registers to store data. They include PREG, 

PCOUT, TOUT, and SPREG. Each register has an 

input circuit that computes the value to be stored 
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using XOR gates and concatenation operations. 

The PREG is a 64-bit register that is only used 

during the decryption routine to store the generated 

plaintext. The input circuit computes the plaintext 

using two 32-bit XOR gates and concatenates the 

outputs of the XOR operation to get a 64-bit value as 

shown in Fig. 5. The inputs to the XOR gates consist 

of the ciphertext (pc_in[63:0]) and the output from 

the permutation module ({sout[191:160], 

sout[95:64]}). The PREG value is given to the 

PCOUT register after the decryption routine is 

complete. 

The PCOUT is a 64-bit register that stores the 

generated plaintext or ciphertext depending on 

whether the encryption or decryption routine is 

executed. The inputs to the register use two 32-bit 

XOR gates, two multiplexors, and 64-bit 

concatenation to compute the value stored in the 

register as shown in Fig. 6. The inputs to the XOR 

gates consist of the plaintext/ciphertext input 

(pc_in[63:0]) and the output from the permutation 

module ({sout[191:160], sout[95:64]}). The outputs 

from the XOR gates are concatenated to get a 64-bit 

value. The multiplexor 1 selects between the 64-bit 

PREG output (preg[63:0]) and 64’d0 which indicates 

a null value when the decryption verification fails. 

The multiplexor 2 selects between the concatenated 

value and the output of multiplexor 1 when 

executing encryption and decryption respectively. 

The TOUT register store the generated 64-bit 

during both encryption and decryption routines using 

only the concatenation operator as shown in Fig. 7. 

The input to the register concatenates two 32-bit part 

selects from the output of the permutation module 

(sout[47:16] and sout[143:112]). 

The SPREG is a 192-bit register that serves as an 

input to the sLiSCP-light-192 permutation module. 

This has the most complicated input circuitry among 

all the registers as shown in Fig. 8. The circuit uses a 

total of six 32-bit input XORs, three multiplexors, 

and four concatenation operators. The inputs to the 

first concatenation are the key (k) and the nonce (n), 

this is selected during the initialization process. The 

second concatenation inputs include n and sout 

which is selected during the nonce processing. The 

third concatenation is selected during the tag 

processing while the last concatenation is selected 

during the plaintext/ciphertext processing. 

 

 
Fig. 5.  PREG Register Input Circuit.  

 
Fig. 6.  PCOUT Register Input Circuit.  

 

 
Fig. 7.  TOUT Register Input Circuit.  

 

 
Fig. 8.  SPREG Register Input Circuit.  

 

B. Hardware Architecture for sLiSCP-light-192  

The proposed hardware architecture for the 

sLiSCP-light-192 permutation (illustrated in Fig. 2) 

is shown in Fig. 9. The architecture implements 

memory element RC_SC_RAM which stores the 

value of the round constants (rc0 and rc1) and step 

constants (sc0 and sc1). The constants are generated 

based on the rounds (rnd). During the SSb stage, the 

con[15:0] represents the concatenation of rc0 and rc1 

while it represents the concatenation of sc0 and sc1 

during the ASb stage. The RC_SC_RAM is a simple 

memory that stores a total of 512 bits of data. 

The architecture input is the 192-bit register 

SPREG and produces 192-bit value stored in DREG 

register. It consists of 48-bit registers S0, S1, S2, S3, 

and 192-bit register DREG. SB1 and SB3 implement 

the Simeck box which will be discussed later in this 

section. The inputs to S0 and S2 registers are the 

outputs of SB1 (sout1) and SB3 (sout3) respectively. 

The input of register S1 is computed by the XORing 

of sout3, concatenation ({40’hFFFFFFFFFF, 

con[7:0]}), and either dreg[95:0] or spreg[95:48]. 

The input of register S3 is computed by the XORing 

of sout1, concatenation ({40’hFFFFFFFFFF, 
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con[15:8]}), and either dreg[191:144] or 

spreg[191:144]. The input to the DREG register is 

the concatenation of the four registers S0, S1, S2, 

and S3. The architecture uses a total of two XOR 

gates, four multiplexors, and three concatenation 

operators. 

 

 
Fig. 9.  SLiSCP-light-192 Hardware Architecture.  

  

The input to SB1 consist of con[15:0] and either 

dreg[143:96] or spreg[143:96] while that of SB3 is 

made up of con[7:0] and either dreg[47:0] or 

spreg[47:0]. The hardware implementation of SB1 is 

shown in Fig. 10. The same architecture is also used 

by S3 by just changing the inputs. From the diagram, 

a 48-bit input din[47:0] is used to produce a 48-bit 

output sout1[47:0]. The architecture stores the 

shifted value of con[7:0] in the CREG register. The 

Least Significant Bit (LSB) of the CREG register is 

fed into the SRND module during every round. The 

SRND module implements the actual Simeck box 

using four concatenations, one XOR gate, and one 

AND gate as shown in the figure. The SRND module 

iterates for six rounds which means that the proposed 

architecture produces the output using exactly six 

clock cycles. 

 

 
Fig. 10.  Simeck Box (SB) Hardware Architecture.  

 

C. Verification and Control Units  

The Verification Unit (VERIFY) is only activated 

during the decryption routine. It takes as its inputs 

the 64-bit tag (t_in) from the sender and the 

computed tag stored in the TOUT register (t_out) as 

shown the Fig. 4. The VERIFY module compares the 

t_in value to the t_out value. If the comparison is 

true, the computed plaintext is assigned to the output 

(pc_out). This indicates that the received tag is from 

a genuine sender. If the comparison is false, a null 

value is assigned to the pc_out to prevent adversaries 

from getting access to the plaintext. 

The CONTROL unit generates select signals for 

the multiplexors in the overall hardware architecture. 

This is done by implementing a Finite State Machine 

(FSM) with a total of seven states. The transition of 

the states is dependent on the availability of the 

plaintext/ciphertext (PT) and the associated data 

(AD) as shown in Table 1. From the table, a 0 

indicates empty PT/CT and AD while a 1 indicates 

full PT/CT and AD. The seven states include 

load_init, ad, pt_ct, xor_pt, tag, tag_extract, and 

finish. The load_init state initializes and loads the 

inputs during the start of operations. The ad state is 

responsible for associated data processing while the 

pt_ct state is for plaintext/ciphertext processing. The 

xor_pt state is used during the decryption process to 

compute the plaintext. The tag and tag_extract states 

are used to generate the verification tag while the 

finish state verifies the tag and halts the algorithm. 

The various state transitions for both the encryption 

and decryption routines are illustrated in Table 1. 

 
Table 1. FSM STATE TRANSITIONS 

PT/ 

CT 
AD 

Enc State 

Transition 
Enc State Transition 

0 0 

load_init → tag 

→ tag_extract → 

finish 

load_init → tag → 

tag_extract → finish 

1 0 

load_init → pt_ct 

→ tag → 

tag_extract → 

finish 

load_init → pt_ct →

xor_pt → tag 

→ tag_extract → finish 

0 1 

load_init → ad 

→ tag → 

tag_extract 

→ finish 

load_init → ad → tag → 

tag_extract → finish 

1 1 

load_init → ad 

→ pt_ct → tag 

→ tag_extract → 

finish 

load_init → ad → pt_ct → 

xor_pt → tag → 

tag_extract → finish 
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V. HARDWARE RESULTS AND 

VERIFICATION 

The hardware architecture of the SpoC AEAD 

algorithm discussed in Section 4 was implemented 

on an FPGA device and developed using Verilog 

Hardware Description Language (HDL). The 

synthesis results were generated using Xilinx ISE 

14.7 software with a Virtex-4 FPGA device 

(xc4vlx80-12ff1148). The synthesis results reported 

the maximum frequency (Freq) and area in terms of 

Look-up-Tables (LUTs). The higher the frequency of 

a design, the lower the delay (a combination of gate 

delay and wire delay). The lower the number of 

LUTs the better for resource-constrained devices. 

The latency of the design was calculated in terms of 

the number of cycles (cyc) using the equation below: 

cyc=init_ld+N+(ADc*AD)+(PTCTc*PT_CT)+TG 

Where init_ld represents the cycles for 

initialization and loading the permutation module 

while TG represents the cycles for tag processing. 

ADc and PTCTc represent the cycles for the 

associated data processing and the 

plaintext/ciphertext processing respectively while 

AD and PTCT represent the total number of 

associated data and plaintext/ciphertext blocks 

respectively. The lower the number of cycles the 

faster the design. The frequency, area, and cycle 

metrics are used to compute the throughput (TP) and 

Throughput-to-Area (TPA) metrics. The TP metric is 

computed by dividing the block size by the cycles 

and multiplying by the frequency (Freq x Blk / 

Cycles) while the TPA metric is computed by 

dividing the TP value by the area (TP/area). TPA 

metric is a very important parameter for comparing 

hardware implementations. This metric shows 

clearly the attempt of a hardware designer to 

significantly optimize one characteristic of a design 

(either area or throughput) at the expense of another. 

The synthesis results for the SpoC AEAD 

algorithm are shown in Table 2. The hardware 

implementation consumed 951 LUTs at 246.6 MHz 

maximum clock frequency with 589 cycles for 

encryption (590 cycles for decryption), TP of 26.8, 

and TPA of 0.03. The results from this work are 

compared to that of [22] which implemented SpoC, 

ASCON, COMET-CHAM, COMET-AES, and 

GIFT-COFB. When compared to the SpoC 

implementation in [22], this work used 30% fewer 

LUTs for both encryption and decryption. The 

decrease in area in this work is a result of the 

optimization of the implementation for low-cost 

devices while [22] implemented the basic iterative 

architecture without optimizing. This work achieved 

almost two times the frequency of the SpoC 

implemented in [22]. The SpoC implementation in 

[22] used 150 fewer cycles as compared to this work. 

This is because this work implemented the SpoC 

using extra registers in other to reduce the critical 

path which increases the frequency. The increase in 

frequency and reduced area resulted in this work 

recording better results in terms of TP (Mbps) and 

TPA (Mbps/LUT) than the implementation in [22]. 

 
Table 2. SYNTHESIS RESULTS AND COMPARISONS 

Algo

rithm 

Blk 

(Bit) 
Rnd 

Freq 

(MHz) 

Area 

LUT 
Cyc TP TPA 

GIF

T-
COB

E 

[22] 

128 40 134.3 1960 205 83.9 0.04 

CO
MET

-

AES 
[22] 

128 10 128.6 3058 73 225 0.07 

CO

MET
-

CHA

M 
[22] 

128 80 145.5 2338 357 52.2 0.02 

ASC

ON 

[22] 

64 12 174.4 1913 68 164 0.08 

Spo

C 

[22] 

64 108 131 1364 439 19.1 0.01 

Spo
C 

[This 

Wor
k] 

64 108 246.6 951 589 26.8 0.03 

 

The hardware implementation of the SpoC AEAD 

algorithm was verified through simulation using 

Xilinx ISE Simulator (ISIM). The test vectors for the 

simulation were obtained from [23]. For the 

encryption routine, the key and the nonce use the 

same 128-bit value 

(128’h000102030405060708090A0B0C0D0E0F0) 

while the associated data (ad) and plaintext also use 

the same 64-bit value (64’h0001020304050607). The 

generated 64-bit ciphertext (ct) and tag are 

64’h01DCF91B896496FC and 

64’h0CCCDBEC61B55102 respectively as shown in 

Fig. 11. The encryption routine uses a total of 589 

clock cycles. For the decryption routine, the key, 

nonce, associated data use the same values as the 

encryption routine with a 64-bit ciphertext 

(64’01DCF91B896496FC) and a 64-bit tag 

(64’h0CCCDBEC61B55102). The generated 64-bit 

plaintext (pt) and tag are 64’h0001020304050607 

and 64’h0CCCDBEC61B55102 respectively as 

shown in Fig. 12. The encryption routine uses a total 

of 590 clock cycles. 

A popular platform for the execution of 

lightweight cryptographic algorithms is the 
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Electronic Product Code (EPC) [24] RFID tags. 

These tags are part of the target devices of the NIST 

lightweight AEAD competition. The EPC tags are 

passively powered and for that matter, many research 

works [25, 26, 27] consider a clock frequency of 100 

kHz as the upper bound for the tags. It is a common 

notion that the authentication of the EPC tags should 

take less than 150 msec for the whole process [28]. 

With the 150 msec authentication time and the 100 

kHz clock frequency, the maximum number of 

cycles required for the authentication of a tag is set at 

15,000 clock cycles. From our simulation results, the 

encryption and decryption routines of the proposed 

SpoC AEAD hardware architecture used 589 and 

590 clock cycles respectively. This indicates that the 

proposed SpoC hardware architecture meets the 

latency requirements of the real-world low-cost 

hardware devices. 

 

 
Fig. 11.  Simulation of SpoC AEAD Enc Routine.  

 

 
Fig. 12.  Simulation of SpoC AEAD Dec Routine.  

 

 

VI. CONCLUSION 

 The search for lightweight AEAD algorithms by 

NIST for resource-constrained devices like RFID 

tags has entered into the second round. The 

examiners of the second-round candidates are 

advocating for third party hardware implementations 

(ASIC or FPGA) of the 32 second-round candidates. 

This paper, therefore, provides a hardware 

implementation of the SpoC AEAD algorithm that 

made it into the second round of the NIST 

competition. The implemented version is the SpoC-

64 which is made up of a 128-bit key, 128-bit nonce, 

64-bit plaintext, 64-bit associated data, 64-bit tag, 

and a 64-bit ciphertext. The SpoC AEAD is sponge-

based which uses the Beetle mode of operation with 

the sLiSCP-light-192 permutation as the primary 

primitive for the algorithm.  

The proposed SpoC AEAD algorithm hardware 

architecture was designed using Verilog HDL with 

Xilinx ISE 14.7 used for synthesis (using Virtex-4 

FPGA device) and ISIM for simulation. The 

synthesis and simulation reports provided the 

maximum frequency, area, cycles, throughput (TP), 

and throughput-to-area (TPA). The proposed SpoC 

AEAD hardware architecture consumed 951 LUTs, 

achieved a maximum frequency of 246.61 MHz, 

used 589 and 590 clock cycles for encryption and 

decryption respectively, recorded a TP of 26.8 Mbps, 

and a TPA ratio of 0.03.  

The results from this work were compared to an 

existing third-party hardware implementation of the 

SpoC algorithm.  This work used 30% fewer LUTs 

for both encryption and decryption as compared to 

the existing work. The decrease in area in this work 

is a result of the optimization of the implementation 

for low-cost devices while the existing work 

implemented the basic iterative architecture without 

optimizing. This work achieved almost two times the 

frequency of the existing SpoC implementation. The 

existing SpoC implementation used 150 fewer cycles 

as compared to this work. This is because this work 

implemented the SpoC using extra registers in other 

to reduce the critical path which increases the 

frequency. The increase in frequency and reduced 

area resulted in this work recording better results in 

terms of TP and TPA than the existing 

implementation.  

The latency results (clock cycles) used by the 

proposed SpoC hardware design were compared to 

the real-world EPC RFID tags authentication time. 

These tags are part of the target devices of the NIST 

lightweight AEAD competition. The maximum 

number of cycles required for the authentication of a 

tag is set at 15,000 clock cycles. From our simulation 

results, the encryption and decryption routines of the 

proposed SpoC AEAD hardware architecture used 

589 and 590 clock cycles respectively. This indicates 

that the proposed SpoC hardware architecture meets 

the latency requirements of the real-world low-cost 

hardware devices. 

For future works, the proposed SpoC AEAD will 

be combined with other security protocols to form a 

lightweight cryptographic System-on-Chip (SoC). 
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